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The motion of slngle-temperature binary homogeneous mixtures is studied by 
using a generalized diffusion theory. 

A generalized diffusion theory was proposed in [I] to describe the motion of homogeneous 
n-component mixtures of different temperatures. The fundamental equations were obtained to 
determine some characteristic velocity of a mixture u a of the diffusion fluxes referred to 
this velocity, and other parameters. 

The equations obtained are derived and studied in this paper in the case of single- 
temperature binary homogeneous mixtures for different characteristic veloclties u a. The 
motion of a liquid binary mixture within an infinite rotating cylinder is examined as a 
simple example. 

I. Fundamental Equations of Motion of Binary Homogeneous Mixtures 

Let there be a mixture consisting of two components with the densities 0~ and 02, with 
the number of moles N~ and N2, with the molar masses Mz and M2 and with the molar partial 
volumes Vz and V2. Let us assume that a cor~non temperature T is set in the mixture and there 
is no chemical reaction between the components. 

Let us study the general motion of the mixture by using a certain characteristic velo- 
city ua, and the relative motions of the components by using generalized diffusion fluxes 
J~. In practice, it is known that the "choice of a convenient reference system which governs 
what is to be understood by the common mixture velocity can greatly facilitate the computation 
and interpretation of the results" [2]. One of the following characteristic velocities is 
often used for homogeneous mixtures: the mean mass, volume, molar flow rate, and the velocity 
of one of the components. Depending on the specific conditions, some behavior of one of 
these velocities, e.g., its magnitude [2,3] or direction, can be "predicted" in many practical 
problems. This explains why the mean mass flow rate of a mixture is not always most conven- 
ient for the solution of problems. It is hence necessary to use other characteristic veloci- 
ties to formulate the fundamental laws of mixture motion. 

The main system of equations to determine ua, J~, and T has the form [I] 
2 

u. = ~ a,u,, J~ = p ,  ( u ,  - -  u~);  J~  = - -  (p~,/a.~,)J?, 
k = !  
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The quantities al, a2 in (I. I) are normalized weights which we use to obtain the mean 
mixture velocity ua; fx, f=, mass forces acting on unit mass of each component; hx and h=, 
enthalpies per unit mass of each component; v~ and v~, partial specific volumes; p, equilib- 
rium pressure; ma, viscous stress tensor; ca, strain rate tensor; h*, heat source; and lax 
and ~, chemical potentials. The operation (-) denotes the scalar product and (--) convolu- 
tion in both diad indices. The derivatives d(a)/dt and D(a)/Dt have the form 

d(al 0 
d--t ( ' '  ' )=  ~ ( ' "  ") + (uo- V) ( ' .  ' ), 

(1.2) 
D<al d(a) 

Ot 6 " ' ) =  dt , , _ L u  ~ 1 ~ t  ~t ~ t . . . ) . t , . . . , . V ,  Ua__, . . . , ,V.Ua, .  

Given the  n o r m a l i z e d  w e i g h t s  ak and the  thermodynamic  f u n c t i o n s ,  sys t em ( 1 . 1 )  i s  a d e q u a t e  f o r  
finding the desired quantities. We write this system of equations below for specific values 
of a k. 

Mean Mass Flow Rate (a k = Ck). In this case system (I.I) becomes 

apk + v (p~u.3 = - -  v J~', ap + v'(pu~) = o, 
at at 

d(m)~ m 
P dt _ = p f - - V P + V . X m ,  xm=--~-(V'Um)/-}-  2-~-~ era, 

PiP2 ,n ,,,__ m h2)l vT  1 [ p ]} 
D(m}J~ = Q't" = - - T  - - - -g-  IJl -}" [cz I ~11 ( h i  - -  P2 Dt 13~11 t T 2 T ~ 1  ( [ l  - -  f:~) - -  - -  (Vbl ' l)P, r - -  (Vi - -  V z ) V P  ' ( 1 . 3 )  

- q = t~ m -  ~ f (h , - -  ~)! ~- + -~- ~, ( f r s  0 ,,,, (V~,),,r - -  @,--  v,) V0 - -  ~ �9 
Pa P 

Mean Volume Flow Ra te  (ak =0kVk). I f  the  mean volume f l o w  r a t e  i s  t aken  as the  c h a r -  
a c t e r i s t i c  v e l o c i t y  ua ,  then we o b t a i n  in  p l a c e  o f  ( I .  3) 

Opk 2 dO')v~, 
at + V ' ( p k u ~ ) = - - V ' J ~ ,  ' V'U~= ~ P h - ~  , h=l 

Dto)J~ xv = (V" uu) I + e v, 
P - dtd<~lUv = pf - -  VP + V " % - -  Zh=, D----T--' - T -  

(1.4) 

o<~,,,~ ~ o,~o~ {,~+[o~ _o~, (~,- ~ , ~ ] ~  ~ 
Dt =Q~=- -T  ~,,(p,v, + p~v~) v2 1 

, [( ~ ) ( )d,~,u~ ' (V~,)p,r+ v---k-' ~ ~ ] }  

_, : ( ,_ ~ . ) , .  {oo_o~(~,_ o, ~ ~ + , o .  , ,  ~--  ~o,o (,,- o-, ,,)-o. 

_(,_o,~<o>.o ,<~,,..._ o,o~+,~oi ~ • ~ i  
-- -- - -  , Q7 vl Jl " vz / dt pzvz pipzv2 P2 2 a=l J 
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Let us note that the specific partial volumes Vk can be considered constant [3] in 
many practical problems. Then system (1.4) simplifies. In particular, we obtain the fol- 
lowing generalized compressibility condition: 

V u ~ - O ,  ( 1 . 5 )  

which y ie lds  add i t iona l  advantages in solving problems by using the mean volume flow rate .  

Mean Molar Flow Rate (a k = Nk/N). The mean mixture molar flow ra te  uu i s  an important 
characteristic of m{xturemotion, By using it, the following system of equations can be ob- 
tained 

ON_ + V" (Nu.) --0. o~,, +v . (~uJ=--v4~,  at at 

d~"~ u. = p[_ VP + V" ~, -- P ~ Dt 

-c~ = -r" (v'u~)I + - T " 

Dt =Q~,=--T(N,Mz+N~MOt~ n I~ + t~--~, h,-- M, 

_(, ) N . ( 

--  q = (1-- -MZ- ) l~e + [ a'~ --  ~z~ ( 

+ -T- M, 

T �9 

Mi 

(1.6) 

N,M,+N, M2 ] N (v,-- M~_% 

Velocity of the Second Component (~k = ~k2)- Cases exist when it is most convenient to 
use the veioclty of one of the components as the characteristic mixture velocity. Let this 
velocity be u2. Then we have the following system to find the desired quantities 

~' + v'(P,~) = -- Vii, -~-- + V'(~@ = 0. 
at 

=p/-vp+v'% , % = T(v.u,)/+ 
Dt 

s j, _ Q, = _ T p, { j, + (~, _ =,,hi) V T 1 [~t, ~ ]} (.1.7) 

I [ d(2) u~ Qi]. 
--q = 3,~ +(=--~,h,) + -T- =' h--(V~,)p.r --%VP m p, 

2. Motion of a Binary Fluid Mixture within an Infinite Cylinder 

To illustrate the theory developed, let us examine the motion of a binary fluid mixture 
within an infinite rotating cylinder at a constant temperature and in the absence of external 
forces, as the simplest example. Moreover, the specific partial volumes will be considered 
constant. 

Let an infinite cylinder rotate around its z axis at the constant angular velocity ~, 
and let po and p~ be the densities of the components at the initial time. Find the distri- 
bution of these densities at later times. 

It is most convenient to use the mean volume flow rate u v to solve this problem since it 
is directed only in the @ direction in an (r, 8, z) cylindrical coordinate system. At the 
same time, other characteristic velocities are directed along both the @ and the r axes, 
which radically complicates the solution of the formulated problem. 

The complete system of equations describing such mixture motion can be obtained from 
(1.4)-O.5) 
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u~ = {0; uo(r, t); 0}, J~ = J = {Jr(r, t); Jo(r, t); 0}, 
_ _  1 

a_p:_ = 1 0 (rJr), ~ ---- -- (1 --PiVi), 
Ot �9 Or v~ 

o [, o ] , (  :,, 11,, . . . .  v - -  - - ( r u o )  - -  I - -  v t  + 4 .  + 
at Or r Or p v, / [ cTt ~,-r " 

o,. ,o.o - ~  ."~~ ...... o ~ , . + ~ [ - ( , - ~  "~ - "  ~ '1 }  ' ~ "  0t 2 ~ =  ( p , v , + h v  2)%, t va -7-  + p~v2 0 ~  ' 

o,, +,.(:o+o.o~= { o~,i~_o,) o.,l 
-05- -or-/ --T(p,~ +~g)~] So+ -~--~ G --FJ' 

, op u~ ~ ( ~_ v. ) ( o4 S,rU_. ) 
--G-oF= r p , ~ at 2 

The s y s t e m  o f  n o n l i n e a r  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  (2. ! )  w i t h  t h e  known phenomeno-  
l o g i c a l  c o n s t a n t s  i s  s u f f i c i e n t  f o r  f i n d i n g  the  s i x  unknowns 0~,  Pz,  u0 ,  J 0 ,  J r ,  and p.  

As t + 0% t h e  f o l l o w i n g  known r e s u l t s  [3] can be  o b t a i n e d  f rom ( 2 . 1 ) :  

u o=Qr;  J o = J r = O '  dp. = p ~ r ,  ( 2 . 2 )  
dr 

_ _  1 dP___L= 1 p~(vi_vi)f~r,  p~= (1--p~v~). 
dr IX ~ l v2 

In the nonstationary case, we linearize (2.1) to obtain the analytic solution and we 
assume that the diffusion flux does not affect the mixture velocity distribution u o. We 
consequently obtain 

0ua =v0---~ r [  --~r-(rua)], 0 t r  r Or 
aO a flpl_ = 1 0 (r Jr), 

O Jr + K  jr + K D  Opt Ug 1 
y -  W = KC r ' p~ = ~ (1-- piv,), (2.3) 

OJo + Kjo = _ K L Ouo Op u~ - - ( 1 - -  v~ ) O Jr 
o--t- ot ' -~ =P-T- ~-~ -0t-  

The constants K, D, L in (2.3) have the form 

K : T ( p i v ~ + h v ~ ) = ~  ' , D =  Thv2 --~" =7, I~-----~--/. (2.4) 

Let us note that we retain the term ue/r in (2.3) since it causes a redistribution of 
components along the r axis. 

With conditions u 0 = 0 at t = 0 and u 0 = ~R at r = R, the first equation of (2.3) yields 

the solution [4] 

uo (r, t) = Qr + 2f~R 
n = l  

(2.5) 

Here Io and II are Bessel functions of the first kind of zero and first order, respectively, 
and ~n are positive values satisfying Iz(%) = 0. 

R. We henceforth limit ourselves to the following approximation for u o. 

Then the equation to find Pz, Jo, Jr has the form 

__Op~ = I 0 (r Jr), OJ_~a nt - KJo = 2KL~2,v - -  exp - -  ~z vt ( 2 . 6 )  
Ot r Or Ot Rlo(~.n) " R 2 ' 

r t ~ l  
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0----~ + KJ~ -I- KD Or . = ~  

If K -~ oo in (2.6) (this case corresponds to neglecting aJ/3t in classical diffusion 
theory), then system (2.6) together with the conditions Jr = 0 at t = 0 and Jr = 0 at r = R 
yields a solution of the form 

( 

- 

n,=l 

. ') 
pi=p?+~ r= 2 + 

t 

1 ;V Dt 

~,2 4 (~,.) 
+ 2L~R~_D E 

n =  1 

(2.7) 

Under the condition D << v, we have for large t 

" = P? + -Tb- (r' - n '  ,2m~, 
t l = l  

I f  K # oo in  ( 2 . 6 ) ,  i . e . ,  i t  i s  imposs ib le  to n e g l e c t  the  term a J o / a t ,  then system (2.6) 
must be solved in combination with the conditions Jr = a Jr TM = J0 = 0 for t = 0, Jr = 0 for 
r=R. 

= >-- 0 we find the following ~pression for px : In this case, for K = --4KD(Xn/R =) = ~n 

1 . . . . . . .  X P' = P; + 2D" ~R' R' 

1 - ~ e x p  - + ~2  exp "~t . (2.9) 
X ~ 1 "--~} K -I- IX. 2 - - ~ v + ~ ( K + w )  

The s o l u t i o n  (2.9)  d i f f e r s  from (2.7)  o n l y  a t  the  i n i t i a l  t imes ,  whi le  (2.9) and (2 .7)  
tend to a con~aon distribution as t -+ ~, of the form 

pO ( W . - -  v i )  r ~ 1 
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