A GENERALIZED DIFFUSION THEORY OF BINARY HOMOGENEOUS MIXTURES.
MIXTURE MOTION WITHIN AN INFINITE ROTATING CYLINDER
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The motion of single-temperature binary homogeneous mixtures is studied by
using a generalized diffusion theory.

A generalized diffusion theory was proposed in [1] to describe the motion of homogeneous
n~component mixtures of different temperatures. The fundamental equations were obtained to
determine some characteristic velocity of a mixture ugy of the diffusion fluxes referred to
this velocity, and other parameters.

The equations obtained are derived and studied in this paper in the case of single-
temperature binary homogeneous mixtures for different characteristic velocities -ug. The
motion of a liquid binary mixture within an infinite rotating cylinder is examined as a
simple example.

1. Fundamental Equations of Motion of Binary Homogeneous Mixtures

Let there be a mixture consisting of two components with the densities p, and p., with
the number of moles N; and N,, with the molar masses M, and M, and with the molar partial
volumes V, and V,. Let us assume that a common temperature T is set in the mixture and there
is no chemical reaction between the components.

Let us study the general motion of the mixture by using a certain characteristic velo-~
city u,, and the relative motions of the components by using generalized diffusion fluxes
Jﬁ. In practice, it is known that the "choice of a convenient reference system which governs
what is to be understood by the common mixture velocity can greatly facilitate the computation
and interpretation of the results" [2]. One of the following characteristic velocities is
often used for homogeneous mixtures: the mean mass, volume, molar flow rate, and the velocity
of one of the components. Depending on the specific conditions, some behavior of one of
these velocities, e.g., its magnitude {2,3] or direction, can be "predicted" in many practical
problems. This explains why the mean mass flow rate of a mixture is not always most conven-
ient for the solution of problems. It is hence necessary to use other characteristic veloci-
ties to formulate the fundamental laws of mixture motion.

The main system of equations to determine ug, Jﬁ, and T has the form [1]
2
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The quantities ai, @z in (1.1) are normalized weights which we use to obtain the mean
mixture velocity ugy; £,, f2, mass forces acting on unit mass of each component; h, and h,,
enthalpies per unit mass of each component; v, and v,, partial specific volumes; p, equilib~
rium pressure; Tg, viscous stress tensor; €, strain rate tensor; h*¥, heat source; and u,
and pp, chemical potentials. The operation (+) denotes the scalar product and (+-)} convolu-
tion in both diad indices. The derivatives d{@)/dt and D{@)/Dt have the form
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Given the normalized weights gk and the thermodynamic functions, system (1.1) is adequate for

finding the desired quantities. We write this system of equations below for specific values
of ay.
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Mean Mass Flow Rate (ag = cg). In this case system (1.1) becomes
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Mean Volume Flow Rate (ax =pPgvk). If the mean volume flow rate is taken as the char-
acteristic velocity u,, then we obtain in place of (I.3)
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Let us note that the specific partial volumes vk can be considered constant {3] in
many practical problems, Then system (I.4) simplifies. 1In particular, we obtain the fol-
lowing generalized compressibility condition:

Viu,==0, (1.5)
which yields additional advantages in solving problems by using the mean volume flow rate.

Mean Molar Flow Rate (ax = Nig/N). The mean mixture molar flow rate uy is an important
characteristic of mixture motion. By using it, the following system of equations can be ob-
tained

N
ap,‘ +v-(eut)=—v-Jx, —-~+V»(Nup) =0.
diw Dw)Ju
p =0 — vp+vr..»~§: ,

A 2
Ty = “;‘(V‘”u)f + - ;“ €y,

i M,
D(u) J,i‘ _ NthM? { " = (h ) VT_ i s i a [( f’ -— fz)m
-—--—-*-——*-"Dt zQ‘l‘—‘—T(NSM2+N2M‘}G’:‘ J{ + a’{ wl‘! 1 M hz T 11 Mi

M, \ di®y, N - ( M, ) :H
{1 —_ r— [0y — =20 ,
( M, ) " N, (Vo7 ' M, v/

M vT
i — — T2 . Sl
....q:(x__Ms )Je+{ os*;(hi " )] -+

1 M M, dm g, N M, NM, + NiM,
b ot (1= ) = (1= ) S g e = (e ) e a4 )

(1.6)

Velocity of the Second Component (g = 8k2). Cases exist when it is most convenient to
use the velocity of one of the components as the characteristic mixture velocity. Let this
velocity be u;. Then we have the following system to find the desired quantities
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2. Motion of a Binary Fluid Mixture within an Infinite Cylinder

To illustrate the theory developed, let us examine the motion of a binary fluid mixture
within an infinite rotating cylinder at a constant temperature and in the absence of external
forces, as the simplest example. Moreover, the specific partial volumes will be considered
constant.

Let an infinite cylinder rotate around its z axis at the constant angular velocity @,
and let p? and ps be the densities of the components at the initial time. Find the distri-
bution of these densities at later times.

It is most convenient to use the mean volume flow rate uy to solve this problem since it
is directed only in the 6 direction in an (r, 6, z) cylindrical coordinate system. At the
same time, other characteristic velocities are directed along both the 8 and the r axes,
which radically complicates the solution of the formulated problem.

The complete system of equations describing such mixture motion can be obtained from

(1.4)=(1.5)
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The system of nonlinear partial differential equations (2.}) with the known phenomeno-
logical constants is sufficient for finding the six unknowns p:, pz, ug, Jg, Jy, and p.
As t > », the following known results [3] can be obtained from (2.1):
d
ug =9 Jg=J,=0, f = pQ¥r, (2.2)
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In the nonstationary case, we linearize (2.1) to obtain the analytic solution and we
assume that the diffusion flux does not affect the mixture velocity distribution ug. We
consequently obtain :
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The constants K, D, L in (2.3) have the form
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let us note that we retain the term ug/r in (2.3) since it causes a redistribution of
components along the r axis.

With conditions ug = 0 at t = 0 and uyg = QR at r = R, the first equation of (2.3) yields
the solution [4]

o !,( Dy —— )
Y R vi
, 1) =Qr 4-2Q 2 —_— —-7»‘;"—--—-). (2.5)
ug(r, &) =Qr R"=1 lo ) exp( o

Here I, and I, are Bessel functions of the first kind of zero and first order, respectively,
and A, are positive values satisfying I;(}) = 0.

We henceforth limit ocurselves to the following approximation for ug:
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Then the equation to find o1, Jo, Jy has the form
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If K> « in (2.6) (this case corresponds to neglecting 3J/3t in classical diffusion
theory), then system (2.6) together with the conditions J;, = 0 at t = 0 and Jy = 0 at r = R
yields a solution of the form

- L)
Jo = 2LQv E:i’& mimexp(ngii),
md R Iy (hy) R?
N g
J 2LOWR E: R) {exp(-»- ﬁ"“i) exp(—&i Dt )}’
v—D Iy (M) R? R?
=
Lee R?
- p? - S S
=i+ 50 (= )+
' r A
= o —
+2LQ’R’-\; 2: ( R) {—-l*exp(--—kﬁ vt )w-l—-exp(ukﬁ Dt )} (2.7)
v—D A2 1o (Ay) v RE /. D "R?
Under the condition D « v, we have for large t
: - r
- Lo [, R 19LOR? , I”(A’"‘ ‘R“) 2z Dt ©2.8)
nett g (= ) e () '

1f K # » in (2.6), i.e., it is impossible to neglect the term 3J4/3t, then system (2.6)
must be solved in combination with the conditions Jr = 3J4/3t = Jg = 0 for t = 0, Jy = 0 for
r = R.

In this case, for K® — 4KD(A}/R?) = u; > 0 we find the following expression for p;!
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The solution (2.9) differs from (2.7) only at the initial times, while (2.9) and (2.7)
tend to a common distribution as t + «, of the form
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